Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Neuroreport ; 35(6): 406-412, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526919

RESUMO

Chronic postsurgical pain (CPSP) with high incidence negatively impacts the quality of life. X-C motif chemokine 13 (CXCL13) has been associated with postsurgery inflammation and exacerbates neuropathic pain in patients with CPSP. This study was aimed to illustrate the relationship between CXCL13 and nod-like receptor protein-3 (NLRP3), which is also involved in CPSP. A CPSP model was constructed by skin/muscle incision and retraction (SMIR) in right medial thigh, and the rats were divided into three groups: Sham, SMIR, and SMIR + anti-CXCL13 (intrathecally injected with anti-CXCL13 antibody). Then, the paw withdrawal threshold (PWT) score of rats was recorded. Primary rat astrocytes were isolated and treated with recombinant protein CXCL13 with or without NLRP3 inhibitor INF39. The expressions of CXCL13, CXCR5, IL-1ß, IL-18, GFAP, NLRP3, and Caspase-1 p20 were detected by real-time quantitative reverse transcription PCR, western blot, ELISA, immunocytochemistry, and immunofluorescence analyses. The anti-CXCL13 antibody alleviated SMIR-induced decreased PWT and increased expression of GFAP, CXCL13, CXCR5, NLRP3, and Caspase-1 p20 in spinal cord tissues. The production of IL-1ß, IL-18, and expression of CXCL13, CXCR5, GFAP, NLRP3, and Caspase-1 p20 were increased in recombinant protein CXCL13-treated primary rat astrocytes in a dose-dependent manner. Treatment with NLRP3 inhibitor INF39 inhibited the function of recombinant protein CXCL13 in primary rat astrocytes. The CXCL13/CXCR5 signaling could promote neuropathic pain, astrocytes activation, and NLRP3 inflammasome activation in CPSP model rats by targeting NLRP3. NLRP3 may be a potential target for the management of CPSP.


Assuntos
Quimiocina CXCL13 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neuralgia , Dor Pós-Operatória , Receptores CXCR5 , Animais , Ratos , Astrócitos/metabolismo , Caspases , Quimiocina CXCL13/metabolismo , Interleucina-18 , Neuralgia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dor Pós-Operatória/metabolismo , Ratos Sprague-Dawley , Receptores CXCR5/metabolismo , Proteínas Recombinantes
2.
Front Immunol ; 15: 1295309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426098

RESUMO

Background: Chronic rhinosinusitis (CRS) is a chronic inflammatory disease with an autoimmune background. Altered expression levels of T cell immunoglobulin and mucin-domain containing-3 (TIM-3), C-X-C chemokine receptor type 5 (CXCR5), and programmed cell death protein 1 (PD-1) are implicated in the progression of inflammatory and autoimmune diseases. Moreover, CXCR5+TIM-3-PD-1+ stem-like cytotoxic T cells function as memory stem cells during chronic disease processes and retain cytotoxicity-related gene networks. Objectives: To explore the expressions of CXCR5, TIM-3, and PD-1 on T cells and their correlation with clinical parameters in CRS. Methods: Flow cytometry was used to assess the expressions and co-expressions of CXCR5, TIM-3, and PD-1 on T cells in the tissues of the paranasal sinus and peripheral blood of patients with CRS as well as healthy controls. Immunofluorescence was used to assess the co-localization of TIM-3, CXCR5, and PD-1 with T cells. The disease severity of our patients with CRS was evaluated using the Lund-Mackay score. A complete blood count was also performed for the patients with CRS. Results: Expression levels of CXCR5 and PD-1 on T cells were significantly increased in the nasal tissues of patients with CRS. Compared with those in healthy controls, patients with CRS had high percentages of CXCR5+TIM-3-PD-1+ CD8+ and CD4+ T cells in nasal tissues, while no significant difference was observed in peripheral blood levels. Patients with CRS had a higher density of nasal CXCR5+TIM-3-PD-1+ T cells than that in healthy controls. CXCR5+TIM-3-PD-1+ CD8+ T cell levels in the nasal polyps of patients with CRS were negatively correlated with the patients' Lund-Mackay scores. The levels of CXCR5+TIM-3-PD-1+ T cells in nasal tissues were also negatively associated with disease duration and positively associated with the chronic inflammatory state of CRS. Conclusions: The level of CXCR5+TIM-3-PD-1+ stem cell-like T cells, especially CXCR5+TIM-3-PD-1+ CD8+ T cells, is increased in CRS. Therefore, inducing CXCR5+TIM-3-PD-1+ T cell exhaustion may be an effective immunotherapy for CRS.


Assuntos
60523 , Sinusite , Humanos , Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Doença Crônica , Gravidade do Paciente , Receptores CXCR5/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569326

RESUMO

Primary Sjögren's syndrome (pSS) is an autoimmune disease characterised by B cell hyperactivity. CXCR5+ follicular helper T cells (Tfh), CXCR5-PD-1hi peripheral helper T cells (Tph) and CCR9+ Tfh-like cells have been implicated in driving B cell hyperactivity in pSS; however, their potential overlap has not been evaluated. Our aim was to study the overlap between the two CXCR5- cell subsets and to study their PD-1/ICOS expression compared to "true" CXCR5/PD-1/ICOS-expressing Tfh cells. CXCR5- Tph and CCR9+ Tfh-like cell populations from peripheral blood mononuclear cells of pSS patients and healthy controls (HC) were compared using flow cytometry. PD-1/ICOS expression from these cell subsets was compared to each other and to CXCR5+ Tfh cells, taking into account their differentiation status. CXCR5- Tph cells and CCR9+ Tfh-like cells, both in pSS patients and HC, showed limited overlap. PD-1/ICOS expression was higher in memory cells expressing CXCR5 or CCR9. However, the highest expression was found in CXCR5/CCR9 co-expressing T cells, which are enriched in the circulation of pSS patients. CXCR5- Tph and CCR9+ Tfh-like cells are two distinct cell populations that both are enriched in pSS patients and can drive B cell hyperactivity in pSS. The known upregulated expression of CCL25 and CXCL13, ligands of CCR9 and CXCR5, at pSS inflammatory sites suggests concerted action to facilitate the migration of CXCR5+CCR9+ T cells, which are characterised by the highest frequencies of PD-1/ICOS-positive cells. Hence, these co-expressing effector T cells may significantly contribute to the ongoing immune responses in pSS.


Assuntos
Linfócitos T CD4-Positivos , Síndrome de Sjogren , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Interleucinas/metabolismo , Leucócitos Mononucleares , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR5/metabolismo , Linfócitos T Auxiliares-Indutores
4.
Lupus ; 32(9): 1093-1104, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37460408

RESUMO

BACKGROUND: Circulating T follicular helper (cTfh) and T peripheral helper (Tph) subpopulations are shown to be higher in systemic lupus erythematosus (SLE) patients and have been involved in promoting extrafollicular B cell responses. However, a possible association with the B cell activating factor (BAFF), a cytokine mainly related to B cell responses and disease activity in SLE, has not been investigated. Therefore, this study aimed to evaluate the association of cTfh and Tph subpopulations with the BAFF system expression and clinical activity in SLE patients. METHODS: This study included 43 SLE patients and 12 healthy subjects (HS). The identification of cTfh (CD4+CXCR5+PD-1+), Tph (CD4+CXCR5-PD-1+) cells, expression of membrane-bound BAFF (mBAFF), BAFFR, TACI, BCMA, and intracellular IL-21 was performed by flow cytometry. Serum levels of IL-21, CXCL13, and BAFF were analyzed using ELISA. The SLEDAI-2K score was used to evaluate disease activity in SLE patients. RESULTS: Compared with HS, SLE patients showed a significantly increased percentage of cTfh and Tph cells, higher in patients with clearly active disease. SLE patients had markedly higher IL-21-producing cTfh and Tph cells than HS. Both subpopulations were positively correlated with the disease activity in SLE patients. Tph cells were negatively correlated with CD19+CXCR5+ B cells and positively correlated with CD19+CXCR5- B cells. A low expression of mBAFF and their receptors TACI and BCMA was found on cTfh and Tph cells in SLE patients and HS. However, SLE patients with clearly active disease showed decreased expression of BAFFR on cTfh and Tph subpopulations than patients with mildly active/nonactive disease. Serum IL-21, CXCL13, and BAFF levels were higher in SLE patients than in HS. Levels of CXCL13 were correlated with disease activity. Non-significant correlations were observed among T cell subpopulations and IL-21, CXCL13, and BAFF levels. CONCLUSIONS: This study emphasizes the importance of cTfh and Tph cells in SLE pathogenesis. Besides the importance of IL-21, our results suggest that BAFFR could play a role in cTfh and Tph subpopulations in the autoimmunity context.


Assuntos
Lúpus Eritematoso Sistêmico , Humanos , Antígeno de Maturação de Linfócitos B , Linfócitos T CD4-Positivos , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR5/metabolismo , Linfócitos T Auxiliares-Indutores
5.
Neurosci Bull ; 39(11): 1605-1622, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37460877

RESUMO

Epilepsy is a common, chronic neurological disorder that has been associated with impaired neurodevelopment and immunity. The chemokine receptor CXCR5 is involved in seizures via an unknown mechanism. Here, we first determined the expression pattern and distribution of the CXCR5 gene in the mouse brain during different stages of development and the brain tissue of patients with epilepsy. Subsequently, we found that the knockdown of CXCR5 increased the susceptibility of mice to pentylenetetrazol- and kainic acid-induced seizures, whereas CXCR5 overexpression had the opposite effect. CXCR5 knockdown in mouse embryos via viral vector electrotransfer negatively influenced the motility and multipolar-to-bipolar transition of migratory neurons. Using a human-derived induced an in vitro multipotential stem cell neurodevelopmental model, we determined that CXCR5 regulates neuronal migration and polarization by stabilizing the actin cytoskeleton during various stages of neurodevelopment. Electrophysiological experiments demonstrated that the knockdown of CXCR5 induced neuronal hyperexcitability, resulting in an increased number of seizures. Finally, our results suggested that CXCR5 deficiency triggers seizure-related electrical activity through a previously unknown mechanism, namely, the disruption of neuronal polarity.


Assuntos
Actinas , Epilepsia , Animais , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Epilepsia/metabolismo , Neurônios/metabolismo , Receptores CXCR5/metabolismo , Convulsões/metabolismo
6.
Nat Commun ; 14(1): 3611, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330549

RESUMO

Follicular helper T (Tfh) cells are essential for germinal center (GC) B cell responses. However, it is not clear which PD-1+CXCR5+Bcl6+CD4+ T cells will differentiate into PD-1hiCXCR5hiBcl6hi GC-Tfh cells and how GC-Tfh cell differentiation is regulated. Here, we report that the sustained Tigit expression in PD-1+CXCR5+CD4+ T cells marks the precursor Tfh (pre-Tfh) to GC-Tfh transition, whereas Tigit-PD-1+CXCR5+CD4+ T cells upregulate IL-7Rα to become CXCR5+CD4+ T memory cells with or without CCR7. We demonstrate that pre-Tfh cells undergo substantial further differentiation at the transcriptome and chromatin accessibility levels to become GC-Tfh cells. The transcription factor c-Maf appears critical in governing the pre-Tfh to GC-Tfh transition, and we identify Plekho1 as a stage-specific downstream factor regulating the GC-Tfh competitive fitness. In summary, our work identifies an important marker and regulatory mechanism of PD-1+CXCR5+CD4+ T cells during their developmental choice between memory T cell fate and GC-Tfh cell differentiation.


Assuntos
Células T Auxiliares Foliculares , Linfócitos T Auxiliares-Indutores , Linfócitos T Auxiliares-Indutores/metabolismo , Células T Auxiliares Foliculares/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Centro Germinativo , Diferenciação Celular , Receptores CXCR5/genética , Receptores CXCR5/metabolismo
7.
PLoS One ; 18(6): e0287746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352327

RESUMO

Follicular helper T (Tfh) cells are crucial for humoral immunity. Dysregulation of Tfh cell differentiation can cause infectious, allergic, and autoimmune diseases. To elucidate the molecular mechanisms underlying Tfh cell differentiation, we attempted to establish an in vitro mouse model of Tfh cell differentiation in the absence of other cell types. Various cytokines and cell surface molecules are suggested to contribute to the differentiation. We found that stimulating naïve CD4+ T cells with immobilized antibodies to CD3, ICOS, and LFA-1 in the presence of soluble anti-CD28 antibody, IL-6, and antibodies that block IL-2 signaling for 3 days induced the expression of Bcl6 and Rorc(γt), master regulator genes of Tfh and Th17 cells, respectively. TGF-ß significantly enhanced cell proliferation and Bcl6 and Rorc(γt) expression. An additional 2 days of culture without immobilized antibodies selectively downregulated Rorc(γt) expression. These cells produced IL-21 and promoted B cells to produce IgG antibodies. Adding the aryl hydrocarbon receptor (AhR) antagonist CH-223191 to the T cell culture further downregulated Rorc(γt) expression without significantly affecting Bcl6 expression, and upregulated expression of a key Tfh marker, CXCR5. Although their CXCR5 expression levels were still not high, the CH-223191-treated cells showed chemotactic activity towards the CXCR5 ligand CXCL13. On the other hand, AhR agonists upregulated Rorc(γt) expression and downregulated CXCR5 expression. These findings suggest that AhR activity and the duration of T cell receptor stimulation contribute to regulating the balance between Tfh and Th17 cell differentiation. Although this in vitro system needs to be further improved, it may be useful for elucidating the mechanisms of Tfh cell differentiation as well as for screening physiological or pharmacological factors that affect Tfh cell differentiation including CXCR5 expression.


Assuntos
Interleucina-6 , Linfócitos T Auxiliares-Indutores , Animais , Camundongos , Interleucina-6/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Anticorpos Imobilizados , Diferenciação Celular , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo
8.
J Viral Hepat ; 30(8): 638-645, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37129474

RESUMO

The replication of HBV in hepatocytes can be effectively inhibited by lifelong antiviral therapy. Because of the long-term presence of HBV reservoirs, the virus rebound frequently occurs once the treatment is stopped, which poses a considerable obstacle to the complete removal of the virus. In terms of gene composition, regulation of B cell action and function, CXCR5+ CD8+ T cells are similar to CXCR5+ CD4+ T follicular helper cells, while these cells are characterized by elevated programmed cell death 1 and cytotoxic-related proteins. CXCR5+ CD8+ T cells are strongly associated with progression in inflammatory and autoimmune diseases. In addition, CXCR5 expression on the surface of CD8+ T cells is mostly an indicator of memory stem cell-like failure in progenitor cells in cancer that are more responsive to immune checkpoint blocking therapy. Furthermore, the phenomena have also been demonstrated in some viral infections, highlighting the duality of the cellular immune response of CXCR5+ CD8+ T cells. This mini-review will focus on the function of CXCR5+ CD8+ T cells in HBV infection and discuss the function of these CD8+ T cells and the potential of associated co-stimulators or cytokines in HBV therapeutic strategies.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Linfócitos T CD8-Positivos , Citocinas/metabolismo , Linfócitos B , Hepatite B/complicações , Receptores CXCR5/genética , Receptores CXCR5/metabolismo
9.
Eur J Immunol ; 53(8): e2250261, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37141498

RESUMO

Effective vaccines that function through humoral immunity seek to produce high-affinity antibodies. Our previous research identified the single-nucleotide polymorphism rs3922G in the 3'UTR of CXCR5 as being associated with nonresponsiveness to the hepatitis B vaccine. The differential expression of CXCR5 between the dark zone (DZ) and light zone (LZ) is critical for organizing the functional structure of the germinal center (GC). In this study, we report that the RNA-binding protein IGF2BP3 can bind to CXCR5 mRNA containing the rs3922 variant to promote its degradation via the nonsense-mediated mRNA decay pathway. Deficiency of IGF2BP3 leads to increased CXCR5 expression, which results in the disappearance of CXCR5 differential expression between DZ and LZ, disorganized GCs, aberrant somatic hypermutations, and reduced production of high-affinity antibodies. Furthermore, the affinity of IGF2BP3 for the rs3922G-containing sequence is lower than that for the rs3922A counterpart, which may explain the nonresponsiveness to the hepatitis B vaccination. Together, our findings suggest that IGF2BP3 plays a crucial role in the production of high-affinity antibodies in the GC by binding to the rs3922-containing sequence to regulate CXCR5 expression.


Assuntos
Formação de Anticorpos , Linfócitos B , Alelos , Polimorfismo de Nucleotídeo Único , Centro Germinativo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo
10.
J Neuroinflammation ; 20(1): 109, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158939

RESUMO

BACKGROUND: Complex regional pain syndrome type-I (CRPS-I) causes excruciating pain that affect patients' life quality. However, the mechanisms underlying CRPS-I are incompletely understood, which hampers the development of target specific therapeutics. METHODS: The mouse chronic post-ischemic pain (CPIP) model was established to mimic CRPS-I. qPCR, Western blot, immunostaining, behavioral assay and pharmacological methods were used to study mechanisms underlying neuroinflammation and chronic pain in spinal cord dorsal horn (SCDH) of CPIP mice. RESULTS: CPIP mice developed robust and long-lasting mechanical allodynia in bilateral hindpaws. The expression of inflammatory chemokine CXCL13 and its receptor CXCR5 was significantly upregulated in ipsilateral SCDH of CPIP mice. Immunostaining revealed CXCL13 and CXCR5 was predominantly expressed in spinal neurons. Neutralization of spinal CXCL13 or genetic deletion of Cxcr5 (Cxcr5-/-) significantly reduced mechanical allodynia, as well as spinal glial cell overactivation and c-Fos activation in SCDH of CPIP mice. Mechanical pain causes affective disorder in CPIP mice, which was attenuated in Cxcr5-/- mice. Phosphorylated STAT3 co-expressed with CXCL13 in SCDH neurons and contributed to CXCL13 upregulation and mechanical allodynia in CPIP mice. CXCR5 coupled with NF-κB signaling in SCDH neurons to trigger pro-inflammatory cytokine gene Il6 upregulation, contributing to mechanical allodynia. Intrathecal CXCL13 injection produced mechanical allodynia via CXCR5-dependent NF-κB activation. Specific overexpression of CXCL13 in SCDH neurons is sufficient to induce persistent mechanical allodynia in naïve mice. CONCLUSIONS: These results demonstrated a previously unidentified role of CXCL13/CXCR5 signaling in mediating spinal neuroinflammation and mechanical pain in an animal model of CRPS-I. Our work suggests that targeting CXCL13/CXCR5 pathway may lead to novel therapeutic approaches for CRPS-I.


Assuntos
Quimiocina CXCL13 , Dor Crônica , Receptores CXCR5 , Distrofia Simpática Reflexa , Animais , Camundongos , Quimiocina CXCL13/metabolismo , Modelos Animais de Doenças , Hiperalgesia , Doenças Neuroinflamatórias , NF-kappa B , Corno Dorsal da Medula Espinal , Receptores CXCR5/metabolismo
11.
J Diabetes Complications ; 37(3): 108420, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774852

RESUMO

AIMS: We aimed to determine an association between follicular helper T (Tfh) cells and Bcl-6 and CXCL13 levels and determine the role of Tfh cells, Bcl-6, and CXCL13 serum levels in the pathogenesis of diabetic retinopathy (DR) since Tfh cells have an important role in type 1 diabetes; however, their role in type 2 diabetes-related DR requires exploration. METHODS: Blood samples were collected from 24 patients with non-proliferative diabetic retinopathy (NPDR), 20 with proliferative diabetic retinopathy (PDR), and 18 age- and sex-matched healthy volunteers. Flow cytometry detected CD4 + CXCR5 + PD1+ Tfh cells. Serum Bcl-6 and CXCL13 levels were determined using enzyme-linked immunosorbent assay. RESULTS: CD4 + CXCR5 + PD-1+ Tfh cell percentages in peripheral blood and serum levels of Bcl-6 and CXCL13 in the non-proliferative DR (NPDR) and proliferative DR (PDR) groups' were significantly higher than those in healthy individuals. The proportion of Tfh cells in DR patients' peripheral blood positively correlated with Bcl-6 and CXCL13 serum levels, DR course severity, Fasting blood glucose, glycosylated hemoglobin and body mass index. CONCLUSIONS: The increased circulating Tfh cells, serum Bcl-6 levels, and CXCL13 levels of DR patients with type 2 diabetes suggested that circulating Tfh cells and the germinal center response may have a role in the occurrence and development of DR.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Linfócitos T Auxiliares-Indutores/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Retinopatia Diabética/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Linfócitos T CD4-Positivos , Receptores CXCR5/metabolismo
12.
Front Immunol ; 13: 982383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341455

RESUMO

Naive B cells use the chemokine receptor CXCR5 to enter B cell follicles, where they scan CXCL13-expressing ICAM-1+ VCAM-1+ follicular dendritic cells (FDCs) for the presence of antigen. CXCL13-CXCR5-mediated motility is mainly driven by the Rac guanine exchange factor DOCK2, which contains a binding domain for phosphoinositide-3,4,5-triphosphate (PIP3) and other phospholipids. While p110δ, the catalytic subunit of the class IA phosphoinositide-3-kinase (PI3K) δ, contributes to CXCR5-mediated B cell migration, the precise interdependency of DOCK2, p110δ, or other PI3K family members during this process remains incompletely understood. Here, we combined in vitro chemotaxis assays and in vivo imaging to examine the contribution of these two factors during murine naïve B cell migration to CXCL13. Our data confirm that p110δ is the main catalytic subunit mediating PI3K-dependent migration downstream CXCR5, whereas it does not contribute to chemotaxis triggered by CXCR4 or CCR7, two other chemokine receptors expressed on naïve B cells. The contribution of p110δ activity to CXCR5-driven migration was complementary to that of DOCK2, and pharmacological or genetic interference with both pathways completely abrogated B cell chemotaxis to CXCL13. Intravital microscopy of control and gene-deficient B cells migrating on FDCs confirmed that lack of DOCK2 caused a profound migration defect, whereas p110δ contributed to cell speed and directionality. B cells lacking active p110δ also displayed defective adhesion to ICAM-1; yet, their migration impairment was maintained on ICAM-1-deficient FDCs. In sum, our data uncover two complementary signaling pathways mediated by DOCK2 and p110δ, which enable CXCR5-driven naïve B cell examination of FDCs.


Assuntos
Molécula 1 de Adesão Intercelular , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Molécula 1 de Adesão Intercelular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Receptores CXCR5/metabolismo , Transdução de Sinais , Fatores de Troca do Nucleotídeo Guanina/genética , Quimiotaxia de Leucócito , Receptores de Quimiocinas , Fosfatidilinositóis , Proteínas Ativadoras de GTPase
13.
Autoimmunity ; 55(8): 632-639, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36184774

RESUMO

In the current study, we aimed to investigate the effect of paeoniflorin on autoimmune myocarditis. A total of 72 young Lewis rats were randomly divided into control, experimental autoimmune myocarditis (EAM), paeoniflorin low dose (Pae-L 20 mg/kg), paeoniflorin high dose (Pae-H, 40 mg/kg), EAM-NC, CXCR5 siRNA groups, respectively. The levels of TNF-α, IL-6, IFN-γ, and IL-21 were detected. H&E staining was used to investigate the histopathological changes of myocardial tissue. Flow cytometry and immunofluorescence double-labeling assay were used to detect the CD4 and CXCR5. Western blot was employed to investigate the expression of proteins. Pae enhanced the body weight and ameliorated the histopathology and inflammation score of myocardial tissue on day 21 and 35. In the peripheral blood, Pae diminished the proportion of CD4 + CXCR5 + Tfh cells on day 21 and day 35. Furthermore, Pae decreased the expression of CXCR5, CXCL13, programmed cell death-1 (PD-1), phosphorylated p38 (p-p38), phosphorylated ERK1/2 (p-ERK1/2), Bcl-6, and Inducible T cell CO-Stimulator (ICOS) in myocardial tissue on day 35. Our study indicated that paeoniflorin could effectively alleviate autoimmune myocarditis. The mechanism is possibly related to inhibit CXCR5 to reduce Tfh cells via p38 MAPK signaling.


Assuntos
Miocardite , Células T Auxiliares Foliculares , Animais , Glucosídeos , Interleucina-6/metabolismo , Monoterpenos , Miocardite/tratamento farmacológico , Miocardite/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Endogâmicos Lew , Receptores CXCR5/metabolismo , Linfócitos T Auxiliares-Indutores , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
RMD Open ; 8(2)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36270740

RESUMO

OBJECTIVES: Programmed cell death protein 1 (PD-1)-expressing T cells are implicated in the pathogenesis of autoimmune inflammatory diseases such as rheumatoid arthritis. A subset of CXCR5- T cells, termed T peripheral helper (Tph) cells, which drive B cell differentiation, have been identified in ectopic lymphoid structures in established rheumatoid arthritis synovial tissue. Here, we aimed to characterise these in treatment-naïve, early rheumatoid arthritis to determine whether these cells accumulate prior to fully established disease. METHODS: Fresh dissociated tissue and peripheral blood mononuclear cell (PBMC) suspensions were stained with Zombie UV, followed by anti-CD45RO, PD-1, CD3, ICOS, CD8, CD4, CD20, CXCR5, TIGIT and CD38 antibodies prior to analysis. For histology, rheumatoid arthritis synovial sections were prepared for Opal multispectral immunofluorescence with anti-CD45RO, CD20, PD-1 and CXCR5 antibodies. Images were acquired on the Perkin Elmer Vectra V.3.0 imaging system and analysed using InForm Advanced Image Analysis software. RESULTS: Flow cytometry revealed T cell infiltration in the rheumatoid arthritis synovium with differential expression of PD-1, CD45RO, ICOS, TIGIT and CD38. We observed a higher frequency of PD1hiCXCR5- Tph in rheumatoid arthritis synovial tissue and PBMCs versus controls, and no significant difference in T follicular helper cell frequency. Microscopy identified a 10-fold increase of Tph cells in early rheumatoid arthritis synovial follicular and diffuse regions, and identified Tph adjacent to germinal centre B cells. CONCLUSIONS: These data demonstrate that PD-1hi Tph cells are present in early rheumatoid arthritis, but not osteoarthritis synovium, and therefore may provide a target for treatment of patients with early rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Osteoartrite , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/patologia , Membrana Sinovial/metabolismo , Receptores CXCR5/metabolismo , Osteoartrite/patologia
15.
Mol Cell Endocrinol ; 556: 111730, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921919

RESUMO

Polycystic ovary syndrome (PCOS) is becoming a common pathology among women, yet its pathogenesis remains enigmatic. The chemokine C-X-C motif ligand 13 (CXCL13) and its receptor type 5 (CXCR5) regulate inflammatory responses but their roles in PCOS remain unknown. Metformin is commonly administered to PCOS patients but its mechanism of action remains unclear. Thus, we aimed to determine the expression of CXCL13 and CXCR5 in the ovaries of PCOS mice and to evaluate the therapeutic effect of metformin on them. The study comprised four groups of mice: control, PCOS, PCOS plus metformin, and PCOS plus vehicle. CXCL13 and CXCR5 were found to be elevated in the ovarian tissues of the PCOS mice. Metformin reduced ovarian CXCL13 and CXCR5 expressions in the PCOS mice. Hence, CXCL13 and CXCR5 are potentially involved in PCOS pathogenesis; and metformin may help alleviate the symptoms of PCOS by inhibiting CXCL13 expression and actions.


Assuntos
Metformina , Síndrome do Ovário Policístico , Animais , Quimiocina CXCL13 , Feminino , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Síndrome do Ovário Policístico/tratamento farmacológico , Receptores CXCR5/metabolismo
16.
Cell Mol Immunol ; 19(9): 1042-1053, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35851876

RESUMO

The number of elderly people living with HIV is increasing globally, and the condition of this population is relatively complicated due to the dual effects of aging and HIV infection. However, the impact of HIV infection combined with aging on the immune homeostasis of secondary lymphoid organs remains unclear. Here, we used the simian immunodeficiency virus mac239 (SIVmac239) strain to infect six young and six old Chinese rhesus macaques (ChRMs) and compared the infection characteristics of the two groups in the chronic stage through multiplex immunofluorescence staining of lymph nodes. The results showed that the SIV production and CD4/CD8 ratio inversion in old ChRMs were more severe than those in young ChRMs in both the peripheral blood and the lymph nodes, especially when a large number of CD8+ T cells infiltrated the follicles and germinal centers. STAT3 in these follicular CXCR5+CD8+ T cells was highly activated, with high expression of granzyme B, which might be caused by the severe inflammatory milieu in the follicles of old ChRMs. This study indicates that aging may be a cofactor involved in SIV-induced immune disorders in secondary lymphoid tissues, affecting the effective antiviral activity of highly enriched follicular CXCR5+CD8+ cells.


Assuntos
Envelhecimento , Linfócitos T CD8-Positivos , Fator de Transcrição STAT3 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV , Humanos , Macaca mulatta/imunologia , Receptores CXCR5/metabolismo , Fator de Transcrição STAT3/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Replicação Viral
17.
Front Immunol ; 13: 873586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812408

RESUMO

Follicular T cells including T follicular helper (TFH) and T follicular regulatory (TFR) cells are essential in supporting and regulating the quality of antibody responses that develop in the germinal centre (GC). Follicular T cell migration during the propagation of antibody responses is largely attributed to the chemokine receptor CXCR5, however CXCR5 is reportedly redundant in migratory events prior to formation of the GC, and CXCR5-deficient TFH and TFR cells are still capable of localizing to GCs. Here we comprehensively assess chemokine receptor expression by follicular T cells during a model humoral immune response in the spleen. In addition to the known follicular T cell chemokine receptors Cxcr5 and Cxcr4, we show that follicular T cells express high levels of Ccr6, Ccr2 and Cxcr3 transcripts and we identify functional expression of CCR6 protein by both TFH and TFR cells. Notably, a greater proportion of TFR cells expressed CCR6 compared to TFH cells and gating on CCR6+CXCR5hiPD-1hi T cells strongly enriched for TFR cells. Examination of Ccr6-/- mice revealed that CCR6 is not essential for development of the GC response in the spleen, and mixed bone marrow chimera experiments found no evidence for an intrinsic requirement for CCR6 in TFR cell development or localisation during splenic humoral responses. These findings point towards multiple functionally redundant chemotactic signals regulating T cell localisation in the GC.


Assuntos
Imunidade Humoral , Animais , Centro Germinativo , Camundongos , Receptores CCR6/genética , Receptores CCR6/metabolismo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Baço , Células T Auxiliares Foliculares , Linfócitos T Reguladores
18.
Cell Biol Int ; 46(9): 1510-1518, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35670241

RESUMO

The blood brain barrier (BBB) is a protective border that prevents noxious substances from gaining access to the central nervous system (CNS). CXCL13 is a chemokine from the CXC chemokine family, which has been shown to destroy the barrier function of umbilical vein endothelial cells with its receptor CXCR5. Here, we aimed to investigate the role of CXCL13/CXCR5 signaling axis in BBB. The invasive ability of bEnd.3 cells was determined by the Transwell invasion assay. The barrier integrity of bEnd.3 cells was assessed by detecting trans-endothelial electrical resistance, the permeability to fluorescein isothiocyanate-dextran, and the expression levels of the tight junction protein E-cadherin. Lipopolysaccharide (LPS)-activated microglia promoted invasion and barrier dysfunction, and upregulated CXCR5 and p-p38 expression levels in cocultured bEnd.3 cells. However, the effects of activated microglia were alleviated by knocking down CXCR5 in cocultured bEnd.3 cells. Furthermore, recombinant CXCL13 promoted invasion and barrier dysfunction, and upregulated the expression levels of p-p38 in bEnd.3 cells; however, its effects were abolished by treating bEnd.3 cells with the p38 inhibitor SB203580. Our data tentatively demonstrated that LPS-activated microglial cells may promote invasion and barrier dysfunction in bEnd.3 cells by regulating the CXCL13/CXCR5 axis and p38 signaling.


Assuntos
Barreira Hematoencefálica , Quimiocina CXCL13 , Células Endoteliais , Microglia , Receptores CXCR5 , Animais , Encéfalo/metabolismo , Quimiocina CXCL13/metabolismo , Células Endoteliais/metabolismo , Lipopolissacarídeos , Camundongos , Microglia/metabolismo , Receptores CXCR5/metabolismo
19.
Clin Rev Allergy Immunol ; 63(3): 357-370, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35674978

RESUMO

Germinal center (GC) reaction greatly contributes to the humoral immune response, which begins in lymph nodes or other secondary lymphoid organs after follicular B cells are activated by T-dependent antigens. The GCs then serve as a platform for follicular B cells to complete clonal expansion and somatic hypermutation and then interact with follicular dendritic cells (FDC) and follicular helper T cells (Tfh). Through the interaction between the immune cells, significant processes of the humoral immune response are accomplished, such as antibody affinity maturation, class switching, and production of memory B cells and plasma cells. Cell positioning during the GC reaction is mainly mediated by the chemokine receptors and lipid receptors, which both belong to G protein-coupled receptors (GPCRs) family. There are some orphan GPCRs whose endogenous ligands are unclear yet contribute to the regulation of GC reaction as well. This review will give an introduction on the ligands and functions of two types of GC-relating GPCRs-chemokine receptors like CXCR4 and CXCR5, as well as emerging de-orphanized GPCRs like GPR183, GPR174, and P2RY8. The roles these GPCRs play in several antibody-mediated autoimmune skin diseases will be also discussed, including systemic lupus erythematosus (SLE), pemphigus, scleroderma, and dermatomyositis. Besides, GPCRs are excellent drug targets due to the unique structure and vital functions. Therefore, this review is aimed at providing readers with a focused knowledge about the role that GPCRs play in GC reaction, as well as in provoking the development of GPCR-targeting agents for immune-mediated diseases besides autoimmune diseases.


Assuntos
Lúpus Eritematoso Sistêmico , Dermatopatias , Humanos , Linfócitos T Auxiliares-Indutores , Ligantes , Centro Germinativo , Receptores CXCR5/análise , Receptores CXCR5/metabolismo , Receptores Acoplados a Proteínas G , Anticorpos , Diferenciação Celular
20.
Int Immunol ; 34(10): 519-532, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35723683

RESUMO

T follicular helper (Tfh) cells and T peripheral helper (Tph) cells produce interleukin (IL)-21 and are thought to contribute to follicular and extra-follicular B-cell activation, respectively, in autoimmune diseases. It is known that programmed cell death-1 (PD-1)-positive CXCR5+ Tfh-like cells are differentiated from human naive CD4+ T cells by IL-12 plus transforming growth factor (TGF)-ß. However, it remains unclear what cytokines are required for Tph differentiation. In this study, we found that interferon (IFN)-α and IFN-ß reduce the frequency of Tfh-like cells under the IL-12 plus TGF-ß condition, whereas they promote generation of PD-1+CXCR5-CD4+ T cells and secretion of IL-21, IFN-γ and CXCL13. Intracellular cytokine staining and T-cell-B-cell co-culture studies indicated that IFN-α promotes generation of IL-21+IFN-γ +CXCR5-CD4+ T cells thereby enhancing B-cell helper function. By IFN-α treatment, the mRNA levels of IL21, IFNG, CXCL13, CD244, SLAMF7, GZMB and PRDM1 were significantly up-regulated but BCL6 mRNA expression was down-regulated, suggesting a Tph-related gene expression pattern. On the other hand, IL-2-neutralization increased mRNA levels of IL21, CXCL13 and CXCR5, retained BCL6, but showed no clear effect on IFNG or PRDM1. RNA sequencing analyses revealed that PD-1hiCXCR5-CD4+ T cells prepared from in vitro culture show a Tph-related gene expression pattern similar with that of PD-1hiCXCR5- Tph cells obtained from the blood of patients with systemic lupus erythematosus. From our findings, it is highly probable that type I IFNs play a key role in differentiation of Tph cells and trigger Tph cell expansion in autoimmune diseases.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor de Morte Celular Programada 1 , Citocinas/metabolismo , Humanos , Interferons , Interleucina-12/metabolismo , Interleucinas , RNA Mensageiro/metabolismo , Receptores CXCR5/metabolismo , Linfócitos T Auxiliares-Indutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...